白丝 twitter 与数学文化关系的24类考题
发布日期:2024-08-24 04:58 点击次数:85
1、杨辉三角杨辉三角形(又称贾宪三角形或帕斯卡三角形)是二项式总计在三角形中的一种几何摆设.在我国南宋数学家杨辉所著的《详解九章算法》一书中解释了二项和的乘方规矩.
图片白丝 twitter白丝 twitter
在展开式中,a是按其幂指数由高到低摆设的, b是按其幂指数由低到高摆设的;首项a的次数与末项b的次数相似,都等于二项式乘方的次数;各项中 a,b的指数和也等于二项式乘方的次数;展开式中的项数比二项式乘方的次数多 1.展开式各项的总计的规矩:每一瞥首末两项总计都是1,中间各项总计等于它上一瞥相邻的两个总计之和,第n行总计的和等于2^n-1.按照这个规矩,不错把(a+b)^n(n=3,4,…)的展开式中各项的总计平直写出来.举例,(a+b)³的展开式中,各项的总计分袂为1,3,3,1.历史文章:心头罕有|杨辉三角2、洛书(幻方)据说在很久昔时,夏禹治水来到洛水,洛水中浮起一只大乌龟,乌龟背上有一个奇怪的图,图上有很多圈和点,这些奥密的圈和点示意什么风趣呢?有东谈主好奇的数了一下龟背上的圈数和点数,再用数字示意出来,发现这里面有相配有趣的关系:把龟背上的数填入3x3的正方形方格中,岂论是把横着的3个数相加,已经把竖着的3个数相加,八成把斜着的3个数相加,其和都等于15.图片
这等于咱们所说的三阶幻方,而关系幻方的最早纪录,是约于公元前2200年在我国出现的“洛书”.3、斐波那契数列斐波那契数列,又称黄金分割数列,因十三世纪意大利数学家莱昂纳多·斐波那契以兔子繁衍为例而引入,故又称为“兔子数列”,指的是这么一个数列:1、1、2、3、5、8、13、21、34......这列数的规矩是:从第3 项运转,每一项都等于前两项之和.在践诺生存中,斐波那契数列中的数会频繁出当今咱们的目下,举例松果、树叶的摆设,某些花朵的花瓣数(如向日葵花瓣),蜂巢,蜻蜓翅膀等,斐波那契数列在当代物理及化学等范围也有着平日的应用.著明的斐波那契螺旋线(也称“黄金螺旋线”)等于字据斐波那契数列画出来的螺旋弧线,当然界中存在很多斐波那契螺旋线的图案,是当然界最完整的经典黄金比例.4、图解法求解一元二次方程图片
5、三中分角问题三中分角是古希腊几何尺规作图当中的名题,和化圆为方、倍立方问题被比肩为古代数学的三浩劫题之一,该问题的完整呈文为:在只用圆规及一把莫得刻度的直尺将一个给定角三中分.而如今数学上已阐明了在尺规作图的前提下,这个问题无解.历程东谈主们的商榷,若将条款放宽,则不错将一个给定角三中分.举例阿基米德就曾给出用有刻度的直尺三中分角的标准、帕普斯借助反比例函数给出一种三中分角的标准,还有折纸法等等.历史文章:尺规作图怎样三中分一个角?几何模子 | 芳贺折纸定理6、勾股定理(勾股数)中国事发现和商榷勾股定理最陈旧的国度之一,称为商高定理,而更普随处则称为勾股定理.中国古代把直角三角形中较短的直角边叫作念勾,较长的直角边叫作念股,斜边叫作念弦.勾股定理,是几何学中一颗光彩夺筹划明珠,被称为“几何学的基石”,希腊的著明数学家毕达哥拉斯也发现了这个定理,因此天下上很多国度又称勾股定理为“毕达哥拉斯定理”或“百牛定理”.底下先容几种用来表示勾股定理的图形.1.据说中毕达哥拉斯的证法(图①、图②)领导:图①中拼成的正方形与图②中拼成的正方形面积终点.图片
2.弦图的另一种证法(图③)领导:以斜边为边长的正方形的面积+4个三角形的面积=外正方形的面积.图片
3.好意思国第 20 任总统茄菲尔德的证法(图④)领导:3个三角形的面积之和=梯形的面积.历史文章:定理表示|6种标准表示勾股定理7、赵爽弦图三国时辰吴国的数学家赵爽创制了一幅“弦图”,用数形聚首的标准,给出了勾股定理的刺目表示.如图,四个全等的直角三角形不错围成一个大的正方形,中间空的是一个小正方形.通过对这个图形的切割、拼接,机要塞行使面积关系表示了勾股定理.表示标准如下:设直角三角形的三边中较短的直角边为a,另一直角边为b,斜边为c,朱实面积=2ab,黄实面积=(b-a)2=b2-2ab+a²,朱实面积+黄实面积=a2+b2=大正方形面积=c2.图片
8、海伦-秦九韶公式古希腊的几何学家海伦(Heron,约公元50年),在数学史上以处分几何测量问题而闻明,在他的著述《度量》一书中,给出了上述公式和它的表示,这一公式称为海伦公式.图片
海伦公式和秦九韶公式实质上是团结个公式,是以咱们一般也称此公式为海伦一秦九韶公式.历史文章:数学基础|勾股定理表示海伦公式9、黄金分割黄金分割是指将举座一分为二,较大部分与举座部分的比值等于较小部分与较大部分的比值,其比值约为 0.618,这个比值被称为黄金比例,这个比例被公觉得是最能引起好意思感的比例.1.常见的几何图形有:黄金三角形(等腰三角形的顶角八成两底角为36°),黄金矩形(宽与长的比等于黄金比(√5-1)/2的矩形),正五角星等;2.常见的生存应用:建筑如古埃及的金字塔,巴黎的圣母院,法国的埃菲尔铁塔;雕镂如断臂维纳斯;名画如达·芬奇的作品《蒙娜丽莎》等;3.黄金螺旋线(如图①)也称“斐波那契螺旋线”,是字据斐波那契数列画出来的螺旋弧线.图片
4.怎样找黄金分割点:(1)如图②,过点B作AB 的垂线,并在垂线上取BC=AB;(2)敞开 AC,以点 C为圆心,CB为半径画弧,交AC 于点 E;(3)以点A为圆心,AE为半径画弧,交AB 于点P.则点P即为所求.历史文章:风趣风趣几何 | 黄金三角形10、数学的发现《数学的发现》是2006年科学出书社出书的文籍,作家是(好意思)乔治·波利亚.本书通过对多样类型天真而有趣的典型问题(有些瑕瑜数学的)进行精细领会,建议它们的践诺特征,从而回归出多样数学模子.举例:给定A、B和C三个点,作一条直线交 AC于X点,交BC于Y点,使得AX=XY=YB.图片
11、欧几里得欧几里得(约公元前330年~公元前 275年),古希腊数学家,被称为“几何之父”.他最著明的著述《几何底本》是欧洲数学的基础,建议五大公设,欧几里得几何,被平日觉得是历史上最得胜的教科书.欧几里得也写了一些对于透视、圆锥弧线、球面几何学及数论的作品.1.欧几里得定理:直角三角形中,斜边上的高的平方是两直角边在斜边上射影的比例中项.每一条直角边的平方是这条直角边在斜边上的射影和斜边的比例中项.即如图,在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则由欧几里得定理可得:图片
2.欧几里得表示了命题(y+z)²=y²+z²+2yz,(y+z)(y- z)=y²-z².3.还有比拟常见的几何的一些定感性质,如:在职意三角形中,大边对大角等等.12、阿波罗尼奥斯阿波罗尼奥斯(Apollonius of Perga,约公元前262年~190年),古希腊数学家,与欧几里得、阿基米德都名,他的著述《圆锥弧线论》是古代天下后光的科学适度.在几何学中,他给出了著明的阿波罗尼奥斯定理,这是一个对于三角形边长与中线长度关系的定理.阿波罗尼奥斯定理:如图,在△ABC 中,AD 是中线,那么:AB²+AC²=2(AD²+BD²).图片
阿波罗尼奥斯定理的扩充即为斯图尔特定理,同期在该定理中,若△ABC是等腰三角形(AB=AC),则 ADLBC,该定理不错简化为△ABD 或△ACD 的勾股定理.阿波罗尼奥斯圆:点P是平面内一个动点,若点 P到两个定点的距离之比长久等于一个定值,则点P的领路轨迹是一个圆.阿波罗尼奥斯还建议了很多新的性质,并给出抛物线、椭圆、双弧线、正焦弦等称呼,他在解释太阳系内5大行星的领路时,建议了本轮均轮偏心模子,为托勒密的地心说提供了器具.历史文章:几何模子 | 阿氏圆阿氏圆性质及应用阿氏圆的2种构造形势来解题吧 | 费马点+阿氏圆+胡不归13、泰勒斯泰勒斯是古希腊时辰的念念想家、科学家、玄学家,泰勒斯在数学方面划时期的孝顺是引入了命题表示的念念想,它记号着东谈主们对客不雅事物的坚决从教会高潮到表面,这在数学史上是一次不寻常的飞跃.在数学中引入逻辑表示,它的垂死道理在于:保证了命题的正确性;揭示各定理之间的内在沟通,使数学组成一个严实的体系,为进一步发展打下基础;使数学命题具有充分的劝服力,令东谈主信服不疑.1.泰勒斯定理以他的名字定名,其内容为:若A,B,C是圆周上的三点,且AC是该圆的直径,那么∠ABC 势必为直角,八成说,直径所对的圆周角是直角.图片
撸撸色2.他曾行使日影来测量金字塔的高度,曾经准确的展望过日食,他是古希腊第一个将一年修正为365天的东谈主.14、圆幂定理圆幂定理是平面几何中的一个定理,是相交弦定理、割线定理、切割线定理的营救.1.相交弦定理:如图①,若圆内自便弦AB弦CD交于点P,则PA·PB=PC·PD2.割线定理:如图②,P是圆外小数,过点P的两条直线分袂与圆交于点A、B、C、D,则PA·PB=PC.PD. 图片
图片
3.切割线定理:如图③,P是圆外小数,直线PA与圆交于点A、B,PT是圆的切线,T为切点,则PT²=PA·PB.15、月形定理行使尺规作图,求作一个正方形,使它的面积等于已知圆的面积,即“化圆为方”问题.这是古希腊的三浩劫题之一,亦然其中最难处分的一个问题.月形定理践诺上是勾股定理扩充的一个应用,它是由古希腊几何学家希波克拉底建议的,主如果处分圆形和方形面积转化问题(化圆为方).得出论断如下:如图,两个眉月形的面积之和,等于△ABC的面积,即 S+S₂=S3.图片
16、蝴蝶定理蝴蝶定理(Butterfly Theorem),是古代欧氏平面几何中最精彩的适度之一.这个命题最早出当今1815 年,由 W.G.霍纳建议表示.而“蝴蝶定理”这个称呼最早出当今《好意思国数学月刊》1944年2月号,题筹划图形像一只蝴蝶.蝴蝶的体态具有对称性,它的身长与展开的翅膀之比为黄金比,那么它还具有哪些性质呢?将这种蝴蝶身上的6个颠倒点(图①)敞开起来,不错获得图②,其中包含3个等腰梯形,若四边形ABDC 是等腰梯形,MN过对角线AD、BC的交点H,且 AB//MN// CD,则咱们不错获得很多论断,举例:△ABC≌△BAD,△ACD≌△BDC,△AHC≌ △BHD,△ABH~△DCH等等.若四边形ABDC是一般梯形,你能猜出哪些论断仍然成立吗?图片
圆中的蝴蝶定理:如图③,设M为圆内弦 PQ的中点,过M作弦 AB和CD,设AD和BC各相交PQ于点X和Y,则M是XY的中点.图片
该定理不仅有很多扩充,举例:点M移到圆外,也不错将圆变为一个筝形,M为对角线交点,其逆定理也成立.17、婆罗摩笈多婆罗摩笈多(Brahmagupta),是七世纪时的印度数学家,他编辑了《婆罗摩修正体系》(数学方面)和《肯达克迪迦》(天文体方面)两部著述.数学部分触及到三角形、四边形、零、负数、一阶和二阶方程的商榷,他建议的一些主张活着界数学史上有很高的地位.1. 婆罗摩笈多定理:若圆内接四边形的对角线互相垂直,则垂直于该四边形一边且过对角线交点的直线将中分对边.即:如图,圆内接四边形ABCD 的对角线ACIBD,垂足为M,过M作EF⊥BC于点 E,交AD于点F,那么F是AD 的中点.图片
2. 婆罗摩笈多四边形面积公式:若圆内接四边形的四边长为a,b,c,d,则其面积为:图片
,其中s为半周长,即S= (a+b+c+d)/2,自后东谈主们历程商榷对婆罗摩笈多公式进行了推广,不错获得一般四边形的面积的打算公式:图片
,其中0是四边形自便一组对角的度数和的一半,图片
历史文章:几何模子 | 婆罗摩笈多定理&模子&公式风趣风趣几何|海盗埋宝&婆罗摩笈多18、欧拉欧拉是18世纪数学界最凸起的东谈主物之一,他不但为数学界作出孝顺,更把统统这个词数学推至物理的范围.他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了多半的力学、分析学、几何学、变分法等的教材,《无限小分析引论》、《微分学道理》、《积分学道理》等都成为数学界中的经典著述.欧拉对数学的商榷如斯之平日,因此在很多数学的分支中也可频繁见到以他的名字定名的垂死常数、公式和定理.1.欧拉定理:设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d²=R²-2Rr.2.欧拉线定理:自便不等边的△ABC的外心O、重点G、垂心H三点共线,则HG=2G0.3.欧拉恒等式:对于整数甲、乙、a、b、c、d、e、f、g、h,若甲=a²+b²+c²+d²,乙=e²+f²+g²+h²,则甲x乙=A2+ B²+C²+D²,其中A、B、C、D亦然整数,即(a²+b²+c²+ d²)(e²+f²+g²+h²)=A²+B²+C²+D².19、阿基米德阿基米德(公元前287年~公元前212年),伟大的古希腊玄学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基东谈主,而且享有“力学之父”的好意思称,阿基米德和高斯、牛顿比肩为天下三大数学家.1.鞋匠刀形:如图①,若C是线段AB上的任小数,分袂以 AB,BC,CA 为直径且在AB的同侧作半圆,则这三个半圆周所围成的图形称为鞋匠刀形.图片
阿基米德表示了鞋匠刀形的面积等于以AC为直径的圆的面积.如果鞋匠刀形内两个内切圆位于AC的两侧,并与AC相切,那么这两个圆终点.2.阿基米德折弦定理:如图②所示,AB 和BC是⊙0的两条弦(即ABC是圆的一条折弦),BC>AB,M是弧 ABC 的中点,则从M向BC所作垂线之垂足D是折弦 ABC 的中点,即CD=AB+BD.图片
3.圆的引理:阿基米德建议了六个圆关系的引理,其中一个是:如图③,设AB是一个半圆的直径,而且过点B的切线与过该半圆上的自便小数D的切线交于点 T,如果作 DE垂直AB于点E,且与AT交于点F,则 DF=EF.图片
历史文章:定理表示 | 阿基米德折弦定理20、费马皮埃尔·德·费马,17世纪法国讼师和业尾数学家,被誉为“业尾数学家之王”.1638年,勒内.笛卡儿邀请费马念念考对于到三个极点距离为定值的函数问题,费马历程念念考并由此建议费马点的关捆绑论.界说:若一个三角形的最大内角小于 120°,则在其里面有小数,可使该点所对三角形三边的张角均为120°,此时该点叫作念这个三角形的费马点.举例:如图,点P是△ABC的费马点.图片
费马大定理:费马的论断等于:当当然数n≥3时,对于x,y,z的方程x"+y"=z"莫得正整数解.历史文章:几何模子 | 费马点来解题吧 | 加权费马点来解题吧 | 半角模子与费马点完整聚首来解题吧 | 费马点+阿氏圆+胡不归21、梅涅劳斯定理梅涅劳斯(Menelaus)是公元1世纪时的古希腊数学家兼天文体家,著有几何学和三角学方面的很多竹帛.梅涅劳斯定理(简称梅式定理),最早出当今梅涅劳斯的著述《球面体》.图片
22、塞瓦定理塞瓦(Giovanni Ceva,1648~1734),意大利水利工程师,数学家.塞瓦定理载于塞瓦于1678年发表的《直线论》一书,也有书中说塞瓦定理是塞瓦紧要发现.图片
塞瓦定理记念标准:三极点选一个手脚起初,定一标的,绕一圈,三组比例相乘为一.23、托勒密克罗狄斯·托勒密是古希腊后期著明数学家,天文体家,地舆学家和光学家,他一世写了多部科学著述,其中有三部对科学发展有紧要影响.第一个是当今被称为Almagest 的天文论文(即《天文体大成》),尽管它领先被称为《数学论文》,然后又被称为《伟大论文》.第二个是地舆,第三个是占星论说文.图片
托勒密定理:在一个圆内接四边形中,如图②,有 AB·CD+AD·BC=AC·BD.(托勒密定理的一个特例等于咱们熟知的勾股定理)历史文章:定理表示 | 托勒密定理来解题吧 | 托勒密、斯图尔特、暴力解题一齐来24、西姆松定理罗伯特·西姆松是英国数学家,他在几何学和算术方面都有一些孝顺,他曾于1756年校订过欧几里得的《几何底本》.西姆松定理是一个平面几何定理.其表述为:过三角形外接圆上异于三角形极点的自便小数作三边或其延迟线的垂线,则三垂足共线(此线常称为西姆松线);西姆松定理的逆定理为:若小数在三角形三边地点直线上的射影共线,则该点在此三角形的外接圆上.图片
本站仅提供存储管事,统统内容均由用户发布,如发现存害或侵权内容,请点击举报。热点资讯
- 2024-08-09三级片快播 郑糖价钱核心赓续上移
- 2024-07-20三级片快播 陈宽好意思:母亲吃食堂_大皖新闻 | 安徽网
- 2024-08-01三级片快播 奥运第五比赛日看点!全红婵陈芋汐联袂冲金
- 2024-10-22三级片快播 【经典】【TVB】 大时期 大時代 (1992) 郑少秋 刘青云主演
- 2024-08-19【BOIN-106】吸い 4時間 高燃挣扎! 第71集团军某部联袂友邻单元围绕多
- 2024-07-21三级片快播 5个相貌告诉你,躯壳衰退卵白质 | 吃出健康来
相关资讯
- 小母狗 文爱 当然资源部就《市级国土空间总体野心编制指南(试行)》联系情况举行新
- 【BOIN-106】吸い 4時間 法拍不雅察|起拍价6200万元,南京仙林大学城
- パナソニック 分電盤 大形リミッタースペース付 露出・半埋込両用形 赵世奇归来百
- 三级片快播 泰州东谈主速看!澄莹已出!招募活动火热进行中~|西安|科技馆|明城墙
- 男同 av 【财经早报】2024-9-20 星期五